

Partners Meeting Breakout Session 2 11:00am-12:00pm, September 30, 2010

- Moderator: Wayne Elson, U.S. EPA Region 10
- Featured Speakers:
- Jim Halloran, Caterpillar Inc.
- Robert Wilkosz, Idaho Department of Environmental Quality
- Duane Bratvold, Pacific Power Products
- Brad Edgar, Cleaire Advanced Emission Controls
- Antonio Santos, Manufacturers of Emission Controls Association

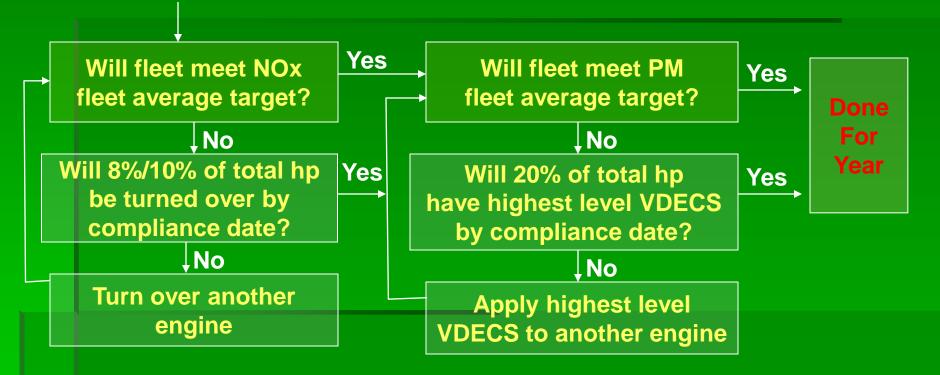
James P. Halloran, Regulatory Affairs Manager – Large Power Systems, Caterpillar

What are the Current Drivers for Projects?

- Regulatory Mandates
 - State California
 - Job Specific
- Voluntary Efforts
- The Hybrid Approach
 - "Trying to do the right thing"
 - Forward thinking

Regulatory Mandates - California

- Diesel Risk Reduction Plan
 - 75% reduction by 2010
 - 85% reduction by 2020
- Goals
 - Retire the legacy fleet
 - Accelerate to Tier 4
- In-Use Off-Road Rule



California In-Use Off-Road Rule

- Self-propelled off-highway diesel vehicles 25+ hp that operate in CA
- Requirements based on fleet size
- Required to meet decreasing fleet averages or BACT
- Will require DPF's and engine/machine turnover
- Will require recordkeeping, labeling and idling provisions
- Annual reporting

What Does it Take to Complete a Successful Diesel Retrofit Project? Off-Road Rule – Compliance Process

Regulatory Mandates - California

- Define the goal
 - Near term
 - Long term
- Analyze the options current succession plan
- Cost effective solutions that make long term sense
 - OSHA visibility/safety standard
- Financial/credit situation
- A partner to guide them along the way

Robert Wilkosz, Manager, Mobile and Area Source Program, Idaho Department of Environmental Quality

and

Duane Bratvold, Application Engineer, Pacific Power Products

Know the fleet (catalog the vehicles)

Know what can and can not be retrofitted
Know the engine and chassis configurations
Know what retrofit specifics will be necessary

Know the fleet (catalog the vehicles)

Know what retrofit specifics will be necessary

- Equipment, installation configuration
- Vehicle and equipment owners will want to minimize altering the exhaust configuration.
 - Engines > 175 HP require little or no exhaust modification.
 - Engines < 175 HP, especially non-road engines, may require extensive exhaust modifications due to space constraints.
 - Most fork trucks, tractors, mowers, and small construction equipment have small engines tightly tucked under the engine shroud.
 - Locating a retrofit exhaust control outside of the shroud might impair the operator's vision or put the exhaust control at risk for damage.
 - A same side-in/ side-out configuration may create additional space constraints, especially on the smaller engines.
- May be difficult to locate CCV so mechanic can easily service filter.
 - If mechanic can't easily service the filter, they likely will disconnect the CCV

Engage your customer throughout the process

- Be sure they know the benefits of diesel retrofits
- Be sure you know what they expect
- Engage mechanics/technicians early in process
 - Make sure you have their buy-in prior to any retrofits.
- Be responsive to their operations and schedules
- Ensure technicians get proper training on retrofits
- Stay in frequent contact before and after retrofit

Ensure there is sufficient expertise on your team

Project Manager

- Knowledgeable, personable, engaging
- Project Administrator for large projects and programs
 - accelerate the processing of work orders, purchase orders, grants, etc.
 - **Database Technician**
 - Large projects generate large amounts of information
 - Absolutely key to proper quality assurance
 - operational integrity
 - fiscal integrity

RFP Process

- Be sure bidders receive adequate information
 - vehicle fleet information
 - timeline
 - needs of end customer
 - consider developing convenience contracts that can be used for more than one project.

RFP Process

Score applicants based on:

- Quality of retrofit technology
- How retrofit technology meets your needs
- Contractor's expertise / experience providing and installing technologies
- Price of technology
 - Scoring bids on price alone is risky, especially with less than perfect bid specifications

Know and discipline your contractor

- Research their previous performance scrupulously
- Avoid the low dollar-low expertise labor pool & business start-ups.
 - Experienced contractors significantly reduce risk of failure
- Have clear set of expectations
 - Timeline, quality
- Ensure frequent meetings and adequate reports.
 - Requiring regularly scheduled conference calls helps keep the projects on schedule.

Know and discipline your contractor

- Make sure project manager, fleet manager, and contractor all sign a document (work assignment) agreeing on:
 - Specific vehicles to be retrofitted
 - Specific technologies at specific costs
 - Always budget for the unknown
 - Retrofitting diesel vehicles and equipment is like renovating a house
 - You may not know of additional costs needs until after you have started a project
 - Be prepared to relocate some installs if the mechanics are unhappy with the end result

Bradley L. Edgar, Ph.D.,

President and Chief Technology Officer Cleaire Advanced Emission Controls, LLC

Initial steps for a retrofit project

Step 1: Establish a need/market for retrofits

- Regulation (Requirement)
- Incentives (Funding)
- Enticements (Reward)
- Combinations of the above
- Step 2: Establish Performance Standards
 - Best Available Control Technology (BACT)
 - Used in California, New York, and other states

What is **BACT**?

Best Available Control Technology* (BACT),

- If possible, install highest performing technology first

- If not possible default to second best, third best, etc.

For diesel PM retrofits

Best: Diesel Particulate Filter (DPF)

Second Best: Partial Filter

Third Best: Diesel Oxidation Catalyst

*Sometimes referred to as "BART" or "Best Available Retrofit Technology".

Examples of Classifications

California Air Resources Board (CARB)				
Level 1	Level 2	Level 3		
25%+ PM Reduction	50%+ PM Reduction	85%+ PM Reduction		

City of New York

Level 1	Level 2	Level 3	Level 4
20-24% PM	25-49% PM	50-84% PM	85%+ PM
Reduction	Reduction	Reduction	Reduction
			(or less than or equal to 0.01 g/bhp-hr of diesel PM)

What Does it Take to Complete a Successful Diesel Retrofit Project? Comparison of Retrofit Technologies

Overview: The exhibits above are actual PM collection samples from an engine testing laboratory used to collect and measure diesel particulate matter (PM) emissions. Test conditions are: Verfield at 25% PM Reduction Little black carbon removal Little ultrafine PM removal Does not remove lube oil ash Verified at 85%+ PM Reduction Used on all new trucks since 2007 >85% black carbon removal >85% ultrafine removal >85% lube oil ash removal

- Test Cycle: UDDS (Urban Dynamometer Driving Schedule)
- Test Distance: 5.5 miles over 17 minutes
- Fuel Consumed During Test: 1.1 gallons
- Test Vehicle: Heavy-duty truck with a 370 hp Cummins engine (1999 model year)
- PM material on collection samples is 1/1,800th of actual

WEST COAST COLLABORATIVE public-private partnership to reduce diesel emissions What Does it Take to Complete a Successful Diesel Retrofit Project? PM Reduction Capability				
Type of PM	DPF (85-90% PM reduction)	DOC (20-40% PM reduction)		
PM10	Very Good	Good		
PM2.5	Very Good	Marginal		
Ultrafine PM	Excellent	Poor		
Black Carbon	Excellent	Poor		

Myths About DPF retrofits

Myth 1: DPFs are experimental and not reliable

Not True. Over 26,000 retrofit DPFs have been deployed in the US since 2007, while over 3 million have been deployed on new diesel trucks (light, medium & heavy-duty) during the same period.

Myth 2: DPFs don't work in "cold" or light duty cycles

Not True. There are ten (10) CARB or EPA verified systems that are "actively" regenerated. This means the DPF doesn't rely on engine exhaust temperature to regenerate or "self-clean." Rather they use fuel burners, catalytic burners, or plug-in electric power to heat and combust collected particulate matter. Active systems are ideally suited for colder applications running lower miles and having significant periods of idle.

Myth 3: DPFs are dependent on temperature and duty cycle to reduce PM emissions and be effective

 Not True. Unlike DOCs, DPFs are physical filters that trap diesel PM and provide non-stop filtering regardless of the engine duty cycle or exhaust temperature.

Myth 4: Only a few companies have verified DPF products

 Not True. Between EPA and CARB, more than ten (10) different manufacturers have verified DPF products to the highest level of PM reduction (85%+).

Myth 5: Retrofits aren't effective; only new engines can meet low PM emission levels

Not True. Unlike DOCs, a DPF retrofit can bring an older engine to 2007/2010 PM emissions levels. DPF retrofits are typically far less costly than new vehicles or machines.

Antonio Santos, Director, Special Projects, Manufacturers of Emission Controls Association

All Retrofit Devices Require Maintenance

DPFs

- Ash cleaning at regular intervals
- Periodic inspections should include:
 - Warning lights from backpressure monitor
 - Mounting brackets and clamps
 - Presence of soot in tailpipe
 - Condensation in tubing associated with pressure sensors/monitors

DOCs

- Generally maintenance free; periodic inspections recommended
- Crankcase filters
 - Filter change generally required at normal oil change intervals²⁵

Other Retrofit Maintenance Items

- Proper engine maintenance is critical for retrofit device to function effectively
 - Both pre-installation and on-going engine maintenance
- Currently verified retrofit technologies are generally compatible with biodiesel
 - Typically, B20 or less (biodiesel blend needs to meet current ASTM specifications)
- Retrofit devices must not be operated with fuel additives
- Re-datalog vehicle if change in duty cycle
- Filter swapping needs to be approved by technology vendor

What Does it Take to Complete a Successful Diesel Retrofit Project? Challenges for Diesel Retrofit Projects

- Funding for voluntary programs at all levels
 - Becoming more available but still not enough
- Changes in ARB regulations
 - Technology providers make decisions based on regulatory certainty
- Retrofit device verification
 - R&D intensive
 - More resources needed at EPA and ARB

Summary

- Technical Considerations for Successful Diesel Retrofit Projects
 - Application engineering Matching the right technology to the specific vehicle or piece of equipment
 - Installation Proper professional installation
 - On-vehicle monitors Provide important user feedback on performance
 - Maintenance Vehicle engine and retrofit device require frequent inspection and maintenance

<u>Successful Retrofit Projects Require a Cooperative Effort</u> <u>Between Fleet Owners, Operators,</u> <u>and Technology Providers</u>