### Diesel health effects

West Coast Collaborative Hawai'i Partners Meeting June 25, 2008

Sumeet Saksena, Ph.D.
The East-West Center
Honolulu

#### What is diesel exhaust (DE)?

- Most important: fine particulate matter, PM 2.5 (soot) and ultrafine particles < 0.1 microns
  - Elemental carbon core, large adsorbing surface area. Organics account for 20-40% of the particle weight
  - Easily penetrates the deep lung

#### Gases

- Oxides of nitrogen (lead to photochemical smog)
- Sulfur compounds
- Aldehydes
- Benzene
- Polycyclic aromatic hydrocarbons (PAH)

# Factors influencing chemical composition of DE

- Engine type: heavy-duty vs. light-duty
- Engine operating conditions: idle, accelerate, decelerate
- Fuel formulations: high/low sulfur fuel
- On-road vs. nonroad engines

# DE's contribution to ambient air quality

- Nationwide: 6% of PM2.5 was DE (1998)
- Urban areas: 10- 36%

#### Health effects

- Acute (short-term exposure) effects
- Chronic (long-term exposure) noncancer effects
- Chronic (long-term exposure) carcinogenic effects

## Acute (short-term exposure) effects

- Acute irritation
  - Eye
  - Throat
  - Bronchial
- Neurophysiologic symptoms
  - Lightheadedness
  - Nausea
- Respiratory symptoms
  - Cough
  - Phlegm
- Exacerbation of allergies and asthma

## Chronic (long-term exposure) noncancer effects

- Inflammation of lung tissues
- Particulate matter is known to lead to bronchitis and heart diseases

# Chronic (long-term exposure) carcinogenic effects

- "Likely to be carcinogenic to humans by inhalation".
- Evidence mainly from occupational groups studies
- 70% of cancer risk from air pollution in California stems from DE (CA Air Resources Board)

## Public health impacts

- Nationwide, particulate matter from diesel emissions causes 15,000 premature deaths every year.
- EPA estimates that a \$100 million voluntary diesel retrofit program would create \$2 billion in health benefits from reduced premature deaths, hospital visits, and other costs associated with diesel emissions exposure

#### Health effects: Uncertainties

- Evidence based on old engine technologies
- Applicability of high dose situations (as for workers) to low dose situations (as for the public)
- Lack of actual exposure data, even for workers
- Susceptibilities of different population groups (elders, children)
  - Different concentrations, breathing rates, particle retention in lung tissues

## Improving the exposure data

- Exposure depends on:
  - Population group (who exactly is being exposed?)
  - Concentration in a specific place near a person
  - Time spent in the polluted environment

### Traditional roof-top station



## Limitations of roof-top fixed-site monitoring

- Pollutants dilute exponentially with increase in height owing to wind speed
- Un-validated assumption that roof-top concentrations are well correlated, spatially and temporally, with road-level concentrations
- Does not consider the fact that the time spent on the road is different across commuters

### Monitoring in a bus



Monitoring on a motorcycle



#### **Results for PM10**

(micrograms/m3)

24-h standards: WHO = 50 and VN = 150

|                                    | Bus  | Car  | Motorcycle | Walking | All  |
|------------------------------------|------|------|------------|---------|------|
| Mean                               | 262  | 408  | 580        | 495     | 455  |
| Coefficient of Variation (%)       | 45   | 59   | 34         | 38      | 50   |
| Geometric<br>mean                  | 242  | 343  | 547        | 460     | 397  |
| Geometric<br>standard<br>deviation | 1.46 | 2.07 | 1.38       | 1.32    | 1.56 |

#### Comparison of Urban Air Quality In terms of fine particles (PM10)

| City                                               | Air Quality (micrograms/m3) |
|----------------------------------------------------|-----------------------------|
| Asian mega-cities<br>(Beijing, Delhi, Ho Chi Minh, | 200                         |
| Dhaka, Jakarta, Bangkok)  'Dirtiest' US cities     | 30-50                       |
| (S California, Pittsburg)  Honolulu                | 15                          |
| Indian standard                                    | 60                          |
| US standard                                        | 50                          |

## Comparison of roof-top vs. road-level

• Carbon monoxide was 4 times higher at the road level compared to the roof-top

#### Popular road-side cafes



#### Monitoring in roadside cafes

| Statistic                          | PM10 (μg/m3)<br>24-h standards:<br>WHO = 50 and VN = 150 |                          | CO (ppm) 30-minute WHO standard = 50 ppm; 24-h VN = 5 |                          |
|------------------------------------|----------------------------------------------------------|--------------------------|-------------------------------------------------------|--------------------------|
|                                    | Giai<br>Phong<br>road                                    | Pham Van<br>Dong<br>road | Giai Phong<br>road                                    | Pham Van<br>Dong<br>road |
| Mean                               | 404                                                      | 617                      | 3.2                                                   | 11.3                     |
| Coefficient of variation (%)       | 18                                                       | 32                       | 75                                                    | 8                        |
| Geometric mean                     | 400                                                      | 591                      | 2.8                                                   | 11.3                     |
| Geometric<br>standard<br>deviation | 1.14                                                     | 1.53                     | 1.5                                                   | 1.09                     |

#### **Conclusions**

- Diesel exhaust is a 'likely' carcinogenic
- New evidence is needed based on
  - improvements in engine technology
  - Actual exposure data of workers and general public